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Back in my college days, while working on 

a thesis at the 11th hour (as was the norm), 

I remember coming upon the work of 

Dr. Carlos Ordonez and his team. Back in 

2004, they had come up with a novel 

method to implement the K Means 

Clustering Algorithm using SQL. 

I remember being in awe of the intricacies 

involved in bringing the machine learning 

algorithm into SQL. 

In this post, we will take a look at how 

Convolutional Neural Network (CNN) can 

be used for Image Classification in SQL. 

Now, to be clear, this would certainly be 

impossible without the various features 

developed by Snowflake. While we won’t 

be coding this in pure SQL, we will be 

making use of Snowflake’s support for 

unstructured data and Python UDFs in 

order to achieve this otherwise 

herculean task.

The problem that we are looking to solve 

today happens to be that of metal surface 

defect detection. The dataset can be 

found here: 

https://www.kaggle.com/datasets/fantach

er/neu-metal-surface-defects-data

This dataset has 6 different classes namely 

rolled-in scale (RS), patches (Pa), crazing 

(Cr), pitted surface (PS), inclusion (In) and 

scratches (Sc). For a given image 

containing a defect, our goal is to predict 

which defect this belongs to.

Fig 1: Sample data containing defects



Let us start by training the model. This portion is done on a local system.

We make use of the keras and tensorflow libraries in order to construct a CNN model which 

takes in the image as an input and predicts which class it belongs to.

import numpy as np

from sklearn.datasets import load_files

import tensorflow as tf

from tensorflow.keras.preprocessing.image import ImageDataGenerator

from tensorflow.keras.utils import to_categorical

from tensorflow.keras.preprocessing.image import img_to_array, load_img

#use image data generator to perform some basic preprocessing. 

train_directory = 'train'

train_datagen = ImageDataGenerator(

    rescale=1. / 255,

    shear_range=0.2,

    zoom_range=0.2,

    horizontal_flip=True)

train_generator = train_datagen.flow_from_directory(

        train_directory,

        target_size=(200, 200),

        batch_size=16,

        class_mode='categorical')

test_directory='test'

test_datagen = ImageDataGenerator(rescale=1./255)

validation_directory = 'valid'

validation_generator = test_datagen.flow_from_directory(

        validation_directory,

        target_size=(200, 200),

        batch_size=16,

        class_mode='categorical')

#define the model. 

model = tf.keras.models.Sequential([

    tf.keras.layers.Conv2D(filters=64, kernel_size=(2,2),strides=(2, 2),padding='valid',dila-

tion_rate=(1, 1), activation='elu', input_shape=(200, 200, 3)),

    tf.keras.layers.MaxPooling2D(pool_size=(2, 2),strides=None,padding='valid'),

    tf.keras.layers.Conv2D(filters=128, kernel_size=(2,2),strides=(2, 2),padding='valid',dila-

tion_rate=(1, 1), activation='elu'),



    tf.keras.layers.MaxPooling2D(pool_size=(2, 2),strides=None,padding='valid'),

    tf.keras.layers.Conv2D(filters=256, kernel_size=(2,2),strides=(1, 1),padding='valid',dila-

tion_rate=(2, 2), activation='elu'),

    tf.keras.layers.MaxPooling2D(pool_size=(2, 2),strides=None,padding='valid'),

    tf.keras.layers.Flatten(),

    tf.keras.layers.Dense(512,activation='elu'),

    tf.keras.layers.Dropout(0.3),

    tf.keras.layers.Dense(6, activation='softmax')

])

model.summary()

#compile the model

model.compile(loss='categorical_crossentropy',

              optimizer='adam',

              metrics=['accuracy'])

#fit the model and collect metrics.

history = model.fit(train_generator,

        batch_size = 32,

        epochs=20,

        validation_data=validation_generator,

        verbose=1, shuffle=True)

def load_dataset(path):

    data = load_files(path)

    files = np.array(data['filenames'])

    targets = np.array(data['target'])

    target_labels = np.array(data['target_names'])

    return files,targets,target_labels

x_test, y_test,target_labels = load_dataset(test_directory)

no_of_classes = len(np.unique(y_test))

y_test = to_categorical(y_test,no_of_classes)

def convert_image_to_array(files):

    images_as_array=[]

    for file in files:

        images_as_array.append(img_to_array(load_img(file)))

    return images_as_array



x_test = np.array(convert_image_to_array(x_test))

x_test = x_test.astype('float32')/255

y_pred = model.evaluate(x_test,y_test)

#save the final model as a h5 file

model.save("metal_defects_final.h5")

Without delving into great detail about the model architecture, let me try to summarize the 

CNN shown above. Over here, we make use of 2D Dilated Convolution layers paired with 2D 

Maxpooling layers in order to obtain the embeddings of the image. As seen above, we make 

use of the ELU activation function. We make use of a dropout layer prior to the final output 

prediction in order to prevent overfitting. Finally the output layer makes use of the softmax 

activation function in order to determine the probabilities of the defect classes. 

Fig 2: Model Architecture

Fig 3: Model Loss and Accuracy vs No. of Epochs

The model architecture is as given below:



This model has a test accuracy of 94.5%. The loss is observed to be <0.2. For the purposes of this 

experiment, this model is satisfactory.

For those who have a penchant for deep learning and would like to tweak some parameters 

and experiment on top of this model, here is a more detailed summary obtained from Netron

(https://github.com/lutzroeder/netron)

We save the model in a h5 file and upload onto snowflake stage using the PUT command.

Make sure that you set the auto compress to False. Once that is done, we also upload an 

image from the test set onto the stage using the PUT command. Once again, we set auto_-

compress to false.

Now, let us build a UDF in order to load the model and predict on our image.

create or replace function metal_defect_detection()

  returns variant

  language python

  runtime_version=3.8

  imports=('@metal_defects/metal_defects_final.h5','@metal_de-

fects/test/crazing/Cr_120.bmp')

  packages = ('pandas==1.2.3','numpy==1.20.1','keras','tensorflow','pillow','h5py==3.2.1')

  handler='compute'

as

$$

import sys

import h5py

import tensorflow as tf

import keras

import numpy as np

from tensorflow.keras.preprocessing.image import ImageDataGenerator

from tensorflow.keras.preprocessing.image import array_to_img, img_to_array, load_img

IMPORT_DIRECTORY_NAME = "snowflake_import_directory"

#declare import_dir to get the h5 file and the test image.

import_dir = sys._xoptions[IMPORT_DIRECTORY_NAME]

import os

#ensure to set file locking to false.

os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE"

#define handler function

def compute():



Fig 5: Dataflow Diagram

#load model

  model=keras.models.load_model(import_dir +'metal_defects_final.h5')

#load image  

x=np.array([img_to_array(load_img(import_dir+'Cr_120.bmp'))])

#predict image

  y_pred=model.predict_on_batch(x)

  prediction=y_pred.tolist()

#based on prediction output determine which category of defect this belongs in.

  index = prediction[0].index(1)

  if index==0:

    cat="CRAZING"

  elif index==1:

    cat='Inclusion'

  elif index==2:

    cat='Patches'

  elif index==3:

    cat='Pitted'

  elif index==4:

    cat='Rolled'

  elif index==5:

    cat='Scratches'

  return cat

$$;

Be sure to set HDF5 file locking to false in cases where you load a h5 file. 

Once the UDF has been created, we run the following command

select metal_defect_detection();

Select metal_
defect()

SQL Query Snowflake
Python UDF

Snowflake
Stage

import h5py
import tensorflow
import keras... 
return pred def
metal_defect():

Crazing.jpeg

Model.h5



The above diagram represents our final goal. We take full advantage of the unstructured data 

support on Snowflake by uploading the h5 file and the defect images onto the data stage. We 

then write a Python UDF in order to load the model and predict the defect class. This UDF can 

be called in a SQL Query. 

And just like that, we catch lightning in a bottle!

We have brought in deep learning, unstructured data and SQL querying into this melting pot 

– the Snowflake data cloud.  What would have been considered all but impossible only a few 

years ago, can now be done in a matter of minutes. In this era of data renaissance, Snowflake 

brings with it an avalanche of innovation making many an impossible task possible. I, for one 

am excited to see what the future holds. What about you?

Srinivasaraghavan Sundar
Senior Data Engineer, Snowflake Center of Excellence, LTIMindtree

Srinivas usually spends his time either picking up new skills or honing and deep diving into 
his areas of interest in Data Engineering & Data science. He is currently a part of 
LTIMindtree's Snowflake COE in the capacity of a Senior Data Engineer with a real 
penchant for Data Science. When he isn't working, he can be found reading books, learning 
new languages and practicing the keyboard.

Srinivas has a fiery passion for theatre; aside from presiding over his college's theatre club, he 
was part of Crea-Shakthi's Malgudi Days troupe which toured South India in 2018.Today, he 
channels his creativity into finding unique solutions for technical problems, and, well, 
writing blogs like the one above.



LTIMindtree Limited is a subsidiary of Larsen & Toubro Limited

LTIMindtree is a global technology consulting and digital solutions company that enables enterprises across industries to 
reimagine business models, accelerate innovation, and maximize growth by harnessing digital technologies. As a digital 
transformation partner to more than 700+ clients, LTIMindtree brings extensive domain and technology expertise to help drive 
superior competitive differentiation, customer experiences, and business outcomes in a converging world. Powered by nearly 
90,000 talented and entrepreneurial professionals across more than 30 countries, LTIMindtree — a Larsen & Toubro Group 
company — combines the industry-acclaimed strengths of erstwhile Larsen and Toubro Infotech and Mindtree in solving the 
most complex business challenges and delivering transformation at scale. For more information, please visit 
www.ltimindtree.com.


