
Snowflake Python UDF
A new world of opportunities

Point of View

by Srinivasaraghavan Sundar

If you are like me, a data engineer working on the Snowflake Data
Cloud with a bit of a penchant for data science, you will find in Python
UDF a game-changer that opens the door to a world full of possibilities.

We live in a world driven by data. The key

to success in any industry today is firmly in

the hands of those who can best utilize

and govern their data. This age of data

renaissance has seen the rise of many

platforms that can aid an organization

through its data lifecycle. However, the

process of managing, auditing, and

governing these platforms is a hassle.

When used together, these platforms can

entangle to form complex pipelines with

multiple nodes.

Moreover, it is almost impossible to obtain

optimal results without operating each

node in a specific configuration. Each

node is piloted by separate teams who

specialize in that domain. They seldom

have a fundamental appreciation of what

goes on in any other platform. This could

in turn give rise to data silos which in time

can delay your decision making ability.

02

Python UDF Data Flow

So, what is Snowflake’s solution to this

terrifying predicament? Extensibility

Features. Python UDFs along with

Snowpark and External Functions can

help organizations do more with

Snowflake, thereby minimizing the

number of platforms, reducing data

movement and building streamlined

pipelines. Further, clumsy pipelines can be

eliminated by minimizing the number of

platforms in use.

Python UDFs are functions written in

Python and called like a built-in function

on Snowflake. They combine large

open-source libraries on python along

with the scalable compute capability

provided by Snowflake. Complex data

science and data engineering problems

can now be solved with Snowflake.

Select py_udf(3);

Call UDF
in query

Get
resultset

Execute Python
Code

Return
values

import numpy
import pandas
def run(x):...
return x+1

Pitfalls of multiplatform pipelines

03

As seen in the above diagram, Python

UDF brings the capability of running

python functions within SQL. Python UDF

accepts 0 or more parameters. For each

set of parameters passed into a UDF, a

scalar value is returned. For a given

python file, a handler function is defined

and called by the python UDF.

A select statement is used to call the UDF.

There are a number of benefits of using

Python UDF. Some of these include:

1. Ability to reduce complex pipelines to a

simplified form

2. Implement Machine Learning within

Snowflake

3. Leverage Snowflake scalable compute

to run your scheduled python jobs

At this point, I’m sure you’re excited as

well, hopefully, you have a few questions

about what Python UDF is capable of. So,

let’s dive in and look at what this is like in

practice with an example.

Figure 2: Timeseries Analysis

Dataset Description

We have a time-series dataset out here

which contains the ratio of Exports to

Imports of India from 1990 to January 2022.

This dataset has been obtained from FRED

Economic Data. You can download the

dataset from the following link (https://-

fred.stlouisfed.org/series/XTE-

ITT01INM156S)

Let us assume that currently, you are

making use of this dataset to perform a

forecast on what the export-import ratio

would be like for the next 12 months.

Currently, you make use of a virtual machine

to perform the forecasting, but your data is

in Snowflake. Now, because this data gets

appended each month, you have a job

scheduled using Cron scheduler/Airflow to

re-run this model once a month.

Schedule Job

Cron/Airflow

Scheduled
job calls file

Write Timeseries Output
into SF Output table

Get data from SF input
table Into VM

time_series.py

Python Executor

Figure 3: Current Architecture

Python UDF - Why it matters?

Time series analysis using
Snowflake Python UDF

An inadequate architecture

04

Figure 4: Sample Data

Figure 5 : Timeseries data visualized

This is a very typical example that many people would have set up at this very moment. Let

us try to bring the entire pipeline within Snowflake.

Upon downloading the dataset, be sure to upload it onto your Snowflake Cloud Data

Platform. Once that’s done, we are ready to begin. Let us first look at the data present.

select * from "COE_PRACTISE_DB"."PUBLIC"."ARIMA_TEST"

Deriving Insights

We create a python UDF as follows:

create or replace function sarimax_main(DATE VARIANT, RATIO VARIANT)

returns variant

language python

runtime_version = '3.8'

packages = ('pandas==1.2.3','statsmodels==0.12.2')

handler = 'sarimax_func'

as

$$

import pandas as pd

import statsmodels.api as sm

from datetime import datetime

from dateutil.relativedelta import relativedelta

#define the handler function which accepts 2 parameters, date and ratio in the form of a list.

def sarimax_func(date,ratio):

#convert the two lists into a dictionary and then to a pandas dataframe.

 dict={'DATE':date,'RATIO':ratio}

 df=pd.DataFrame(dict)

#define a seasonal arima model

 model=sm.tsa.statespace.SARIMAX(df['RATIO'],order=(1, 1, 1),seasonal_order=(1,1,1,12))

 results=model.fit()

#the first prediction must occur right after the last value in the dataframe.

 start_pred=len(df)+1

#the last prediction is 12 months after the last date

 last_date=df["DATE"].iloc[-1]

 dates=[]

 for i in range(1,13):

We create a python UDF as follows:

create or replace function sarimax_main(DATE VARIANT, RATIO VARIANT)

returns variant

language python

runtime_version = '3.8'

packages = ('pandas==1.2.3','statsmodels==0.12.2')

handler = 'sarimax_func'

as

$$

import pandas as pd

import statsmodels.api as sm

from datetime import datetime

from dateutil.relativedelta import relativedelta

#define the handler function which accepts 2 parameters, date and ratio in the form of a list.

def sarimax_func(date,ratio):

#convert the two lists into a dictionary and then to a pandas dataframe.

 dict={'DATE':date,'RATIO':ratio}

 df=pd.DataFrame(dict)

#define a seasonal arima model

 model=sm.tsa.statespace.SARIMAX(df['RATIO'],order=(1, 1, 1),seasonal_order=(1,1,1,12))

 results=model.fit()

#the first prediction must occur right after the last value in the dataframe.

 start_pred=len(df)+1

#the last prediction is 12 months after the last date

 last_date=df["DATE"].iloc[-1]

 dates=[]

 for i in range(1,13):

We create a python UDF as follows:

create or replace function sarimax_main(DATE VARIANT, RATIO VARIANT)

returns variant

language python

runtime_version = '3.8'

packages = ('pandas==1.2.3','statsmodels==0.12.2')

handler = 'sarimax_func'

as

$$

import pandas as pd

import statsmodels.api as sm

from datetime import datetime

from dateutil.relativedelta import relativedelta

#define the handler function which accepts 2 parameters, date and ratio in the form of a list.

def sarimax_func(date,ratio):

#convert the two lists into a dictionary and then to a pandas dataframe.

 dict={'DATE':date,'RATIO':ratio}

 df=pd.DataFrame(dict)

#define a seasonal arima model

 model=sm.tsa.statespace.SARIMAX(df['RATIO'],order=(1, 1, 1),seasonal_order=(1,1,1,12))

 results=model.fit()

#the first prediction must occur right after the last value in the dataframe.

 start_pred=len(df)+1

#the last prediction is 12 months after the last date

 last_date=df["DATE"].iloc[-1]

 dates=[]

 for i in range(1,13):

Writing the UDF

05

We create a python UDF as follows:

create or replace function sarimax_main(DATE VARIANT, RATIO VARIANT)

packages = ('pandas==1.2.3','statsmodels==0.12.2')

handler = 'sarimax_func'

import statsmodels.api as sm

from datetime import datetime

from dateutil.relativedelta import relativedelta

#define the handler function which accepts 2 parameters, date and ratio in the form of a list.

def sarimax_func(date,ratio):

#convert the two lists into a dictionary and then to a pandas dataframe.

 dict={'DATE':date,'RATIO':ratio}

 df=pd.DataFrame(dict)

#define a seasonal arima model

 model=sm.tsa.statespace.SARIMAX(df['RATIO'],order=(1, 1, 1),seasonal_order=(1,1,1,12))

#the first prediction must occur right after the last value in the dataframe.

#the last prediction is 12 months after the last date

 last_date=df["DATE"].iloc[-1]

create or replace function sarimax_main(DATE VARIANT, RATIO VARIANT)

packages = ('pandas==1.2.3','statsmodels==0.12.2')

#define the handler function which accepts 2 parameters, date and ratio in the form of a list.

#convert the two lists into a dictionary and then to a pandas dataframe.

 model=sm.tsa.statespace.SARIMAX(df['RATIO'],order=(1, 1, 1),seasonal_order=(1,1,1,12))

#the first prediction must occur right after the last value in the dataframe.

 add_month = datetime.strptime(last_date,"%Y-%m-%dT08:00:00.000Z").date() +

relativedelta(months=i)

 dates.append(add_month.strftime("%Y-%m-%d"))

 pred_array=results.predict(start=start_pred,end=start_pred+11,dynamic=True)

 predictions=pred_array.tolist()

 return [predictions,dates]

$$;

Over here, we use the SARIMAX algorithm to perform time series analysis. This UDF takes in 2

parameters, DATE and RATIO and returns a list containing forecasted values for the next 12

months.

We can run the SELECT sarimax_main(DATE VARIANT, RATIO VARIANT); to obtain the

forecast. But wait a second. How do we go about passing the data from the table into the

UDF? Is there a way to call SQL statements from within the UDF? Well, no, UDFs act like a

scalar function in that you pass parameters and it returns a value or a list of values.

Constructing the Wrapper

In order to pass the data from the table into the UDF, we need to create a Stored Procedure

that wraps around the UDF. Let us create a stored procedure using javascript:

CREATE OR REPLACE PROCEDURE timeseries_prediction()

RETURNS variant

LANGUAGE JAVASCRIPT

execute as caller

AS

$$

//create a table to hold the timeseries prediction

var query0="create or replace transient table SARIMAX_OUTPUT (DATE STRING,RATIO

FLOAT);"

var result=snowflake.execute({sqlText:query0});

//select * from the input table

var query1=`select * from "RATIO_OF_EXPORTS_TO_IMPORTS";`

var result_array = snowflake.execute({sqlText:query1});

//collect the output in 2 lists.

06

 add_month = datetime.strptime(last_date,"%Y-%m-%dT08:00:00.000Z").date() +

relativedelta(months=i)

 dates.append(add_month.strftime("%Y-%m-%d"))

 pred_array=results.predict(start=start_pred,end=start_pred+11,dynamic=True)

 predictions=pred_array.tolist()

 return [predictions,dates]

$$;

Over here, we use the SARIMAX algorithm to perform time series analysis. This UDF takes in 2

parameters, DATE and RATIO and returns a list containing forecasted values for the next 12

months.

We can run the SELECT sarimax_main(DATE VARIANT, RATIO VARIANT); to obtain the

forecast. But wait a second. How do we go about passing the data from the table into the

UDF? Is there a way to call SQL statements from within the UDF? Well, no, UDFs act like a

scalar function in that you pass parameters and it returns a value or a list of values.

Constructing the Wrapper

In order to pass the data from the table into the UDF, we need to create a Stored Procedure

that wraps around the UDF. Let us create a stored procedure using javascript:

CREATE OR REPLACE PROCEDURE timeseries_prediction()

RETURNS variant

LANGUAGE JAVASCRIPT

execute as caller

AS

$$

//create a table to hold the timeseries prediction

var query0="create or replace transient table SARIMAX_OUTPUT (DATE STRING,RATIO

FLOAT);"

var result=snowflake.execute({sqlText:query0});

//select * from the input table

var query1=`select * from "RATIO_OF_EXPORTS_TO_IMPORTS";`

var result_array = snowflake.execute({sqlText:query1});

//collect the output in 2 lists.

 add_month = datetime.strptime(last_date,"%Y-%m-%dT08:00:00.000Z").date() +

relativedelta(months=i)

 dates.append(add_month.strftime("%Y-%m-%d"))

 pred_array=results.predict(start=start_pred,end=start_pred+11,dynamic=True)

 predictions=pred_array.tolist()

 return [predictions,dates]

$$;

Over here, we use the SARIMAX algorithm to perform time series analysis. This UDF takes in 2

parameters, DATE and RATIO and returns a list containing forecasted values for the next 12

months.

We can run the SELECT sarimax_main(DATE VARIANT, RATIO VARIANT); to obtain the

forecast. But wait a second. How do we go about passing the data from the table into the

UDF? Is there a way to call SQL statements from within the UDF? Well, no, UDFs act like a

scalar function in that you pass parameters and it returns a value or a list of values.

Constructing the Wrapper

In order to pass the data from the table into the UDF, we need to create a Stored Procedure

that wraps around the UDF. Let us create a stored procedure using javascript:

CREATE OR REPLACE PROCEDURE timeseries_prediction()

RETURNS variant

LANGUAGE JAVASCRIPT

execute as caller

AS

$$

//create a table to hold the timeseries prediction

var query0="create or replace transient table SARIMAX_OUTPUT (DATE STRING,RATIO

FLOAT);"

var result=snowflake.execute({sqlText:query0});

//select * from the input table

var query1=`select * from "RATIO_OF_EXPORTS_TO_IMPORTS";`

var result_array = snowflake.execute({sqlText:query1});

//collect the output in 2 lists.

 add_month = datetime.strptime(last_date,"%Y-%m-%dT08:00:00.000Z").date() +

 pred_array=results.predict(start=start_pred,end=start_pred+11,dynamic=True)

Over here, we use the SARIMAX algorithm to perform time series analysis. This UDF takes in 2

parameters, DATE and RATIO and returns a list containing forecasted values for the next 12

We can run the SELECT sarimax_main(DATE VARIANT, RATIO VARIANT); to obtain the

forecast. But wait a second. How do we go about passing the data from the table into the

UDF? Is there a way to call SQL statements from within the UDF? Well, no, UDFs act like a

scalar function in that you pass parameters and it returns a value or a list of values.

In order to pass the data from the table into the UDF, we need to create a Stored Procedure

that wraps around the UDF. Let us create a stored procedure using javascript:

var query0="create or replace transient table SARIMAX_OUTPUT (DATE STRING,RATIO

date=[]

ratio=[]

while(result_array.next())

{

var date_val = result_array.getColumnValue(1);

date.push(JSON.stringify(date_val));

var ratio_val = result_array.getColumnValue(2);

ratio.push(ratio_val);

}

//call the python udf and pass date array and ratio array

query2=`select sarimax_main (parse_json('[`+date+`]'),parse_json('[`+ratio+`]'));`

var result_array2=snowflake.execute({sqlText:query2});

function_output=[]

while(result_array2.next())

{

var returned_values = result_array2.getColumnValue(1);

function_output.push(returned_values);

}

var forecast=function_output[0][0]

var dates=function_output[0][1]

//Insert into the output table created earlier.

for (let i = 0; i < dates.length; i++) {

query3=`INSERT INTO SARIMAX_OUTPUT (DATE,RATIO) VALUES

('`+dates[i]+`','`+forecast[i]+`')`

var result_array3=snowflake.execute({sqlText:query3});

}

return "SUCCESS";

$$;

date=[]

ratio=[]

while(result_array.next())

{

var date_val = result_array.getColumnValue(1);

date.push(JSON.stringify(date_val));

var ratio_val = result_array.getColumnValue(2);

ratio.push(ratio_val);

}

//call the python udf and pass date array and ratio array

query2=`select sarimax_main (parse_json('[`+date+`]'),parse_json('[`+ratio+`]'));`

var result_array2=snowflake.execute({sqlText:query2});

function_output=[]

while(result_array2.next())

{

var returned_values = result_array2.getColumnValue(1);

function_output.push(returned_values);

}

var forecast=function_output[0][0]

var dates=function_output[0][1]

//Insert into the output table created earlier.

for (let i = 0; i < dates.length; i++) {

query3=`INSERT INTO SARIMAX_OUTPUT (DATE,RATIO) VALUES

('`+dates[i]+`','`+forecast[i]+`')`

var result_array3=snowflake.execute({sqlText:query3});

}

return "SUCCESS";

$$;

07

date=[]

ratio=[]

while(result_array.next())

{

var date_val = result_array.getColumnValue(1);

date.push(JSON.stringify(date_val));

var ratio_val = result_array.getColumnValue(2);

ratio.push(ratio_val);

}

//call the python udf and pass date array and ratio array

query2=`select sarimax_main (parse_json('[`+date+`]'),parse_json('[`+ratio+`]'));`

var result_array2=snowflake.execute({sqlText:query2});

function_output=[]

while(result_array2.next())

{

var returned_values = result_array2.getColumnValue(1);

function_output.push(returned_values);

}

var forecast=function_output[0][0]

var dates=function_output[0][1]

//Insert into the output table created earlier.

for (let i = 0; i < dates.length; i++) {

query3=`INSERT INTO SARIMAX_OUTPUT (DATE,RATIO) VALUES

('`+dates[i]+`','`+forecast[i]+`')`

var result_array3=snowflake.execute({sqlText:query3});

}

return "SUCCESS";

$$;

var date_val = result_array.getColumnValue(1);

var ratio_val = result_array.getColumnValue(2);

//call the python udf and pass date array and ratio array

query2=`select sarimax_main (parse_json('[`+date+`]'),parse_json('[`+ratio+`]'));`

var result_array2=snowflake.execute({sqlText:query2});

var returned_values = result_array2.getColumnValue(1);

//Insert into the output table created earlier.

query3=`INSERT INTO SARIMAX_OUTPUT (DATE,RATIO) VALUES

var result_array3=snowflake.execute({sqlText:query3});

query3=`INSERT INTO SARIMAX_OUTPUT (DATE,RATIO) VALUES

In the above diagram, we make use of Snowsight to build a dashboard in order to visualize

and draw insights from our data. We can see the predicted values from Feb 2022 to Jan 2023

and derive our insights from it.

Completing with a Task

And now, we can create a task on top of this stored procedure to schedule it to run as per our

requirement.

create task timeseries_task

schedule = 'USING CRON 0 0 1 * * America/Los_Angeles'

as

 call timeseries_prediction();

A Simplified, Bright Future

As you can observe, we took a pipeline wherein data moved from an SF table => Spark

cluster/VM=>SF table, all while being scheduled by Airflow/Linux Cron into a pipeline that

only makes use of Snowflake as shown below:

08

Figure 6 : Insights

09

You can see how Python UDF straddled with data in multiple locations to achieve what was

required for the user seamlessly. Multiple platforms are soon to be a relic of the past. While

relics are meant to be remembered, no good can come from using them today.

We have already begun to power our products with Snowflakes extensibility features. This

Figure 7: Improved Architecture

Task

1. Task calls
stored proc

3. Sp calls udf
and passes
data as
parameters

4. Udf returns
forecast in list

2.SP gets data from table

5. SP writes into output_table

Timeseries_SP()

Timeseries_SP()

truly is game changing for us, and I am sure, it would be for you as well. Python UDFs are an

important tool that shouldn't be overlooked.

LTIMindtree Limited is a subsidiary of Larsen & Toubro Limited

LTIMindtree is a global technology consulting and digital solutions company that enables enterprises across industries to reimagine business

models, accelerate innovation, and maximize growth by harnessing digital technologies. As a digital transformation partner to more than

700+ clients, LTIMindtree brings extensive domain and technology expertise to help drive superior competitive differentiation, customer

experiences, and business outcomes in a converging world. Powered by nearly 90,000 talented and entrepreneurial professionals across

more than 30 countries, LTIMindtree — a Larsen & Toubro Group company — combines the industry-acclaimed strengths of erstwhile Larsen

and Toubro Infotech and Mindtree in solving the most complex business challenges and delivering transformation at scale. For more

information, please visit www.ltimindtree.com.

Srinivasaraghavan Sundar
Senior Data Engineer, Snowflake Center of Excellence, LTIMindtree

Srinivas is currently a part of LTIMindtree's Snowflake COE in the capacity of a Senior Data

Engineer with a natural penchant for Data Science. Srinivas usually spends his time either

picking up new skills or honing and deep diving into his areas of interest in Data Engineering

& Data science. He channels his creativity into finding unique solutions for technical problems

and writing content to help our readers.

About the Author

