
Snowflake Python UDF
A new world of opportunities

Point of View

by Srinivasaraghavan Sundar

If you are like me, a data engineer working on the Snowflake Data 
Cloud with a bit of a penchant for data science, you will find in Python 
UDF a game-changer that opens the door to a world full of possibilities. 



We live in a world driven by data. The key 

to success in any industry today is firmly in 

the hands of those who can best utilize 

and govern their data. This age of data 

renaissance has seen the rise of many 

platforms that can aid an organization 

through its data lifecycle. However, the 

process of managing, auditing, and 

governing these platforms is a hassle. 

When used together, these platforms can 

entangle to form complex pipelines with 

multiple nodes.

Moreover, it is almost impossible to obtain 

optimal results without operating each 

node in a specific configuration. Each 

node is piloted by separate teams who 

specialize in that domain. They seldom 

have a fundamental appreciation of what 

goes on in any other platform. This could 

in turn give rise to data silos which in time 

can delay your decision making ability.
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Python UDF Data Flow

So, what is Snowflake’s solution to this 

terrifying predicament? Extensibility 

Features. Python UDFs along with 

Snowpark and External Functions can 

help organizations do more with 

Snowflake, thereby minimizing the 

number of platforms, reducing data 

movement and building streamlined 

pipelines. Further, clumsy pipelines can be 

eliminated by minimizing the number of 

platforms in use. 

Python UDFs are functions written in 

Python and called like a built-in function 

on Snowflake. They combine large 

open-source libraries on python along 

with the scalable compute capability 

provided by Snowflake. Complex data 

science and data engineering problems 

can now be solved with Snowflake.

Select py_udf(3);

Call UDF
in query

Get
resultset

Execute Python
Code

Return
values

import numpy 
import pandas
def run(x):... 
return x+1 

Pitfalls of multiplatform pipelines
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As seen in the above diagram, Python 

UDF brings the capability of running 

python functions within SQL. Python UDF 

accepts 0 or more parameters. For each 

set of parameters passed into a UDF, a 

scalar value is returned. For a given 

python file, a handler function is defined 

and called by the python UDF.

A select statement is used to call the UDF. 

There are a number of benefits of using 

Python UDF. Some of these include: 

1. Ability to reduce complex pipelines to a 

simplified form

2. Implement Machine Learning within 

Snowflake

3. Leverage Snowflake scalable compute 

to run your scheduled python jobs

At this point, I’m sure you’re excited as 

well, hopefully, you have a few questions 

about what Python UDF is capable of. So, 

let’s dive in and look at what this is like in 

practice with an example.

Figure 2: Timeseries Analysis

Dataset Description

We have a time-series dataset out here 

which contains the ratio of Exports to 

Imports of India from 1990 to January 2022. 

This dataset has been obtained from FRED 

Economic Data. You can download the 

dataset from the following link (https://-

fred.stlouisfed.org/series/XTE-

ITT01INM156S) 

Let us assume that currently, you are 

making use of this dataset to perform a 

forecast on what the export-import ratio 

would be like for the next 12 months. 

Currently, you make use of a virtual machine 

to perform the forecasting, but your data is 

in Snowflake. Now, because this data gets 

appended each month, you have a job 

scheduled using Cron scheduler/Airflow to 

re-run this model once a month. 

Schedule Job

Cron/Airflow

Scheduled 
job calls file

Write Timeseries Output 
into SF Output table

Get data from SF input 
table Into VM

time_series.py

Python Executor

Figure 3: Current Architecture

Python UDF - Why it matters?

Time series analysis using
Snowflake Python UDF

An inadequate architecture
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Figure 4: Sample Data

Figure 5 : Timeseries data visualized

This is a very typical example that many people would have set up at this very moment. Let 

us try to bring the entire pipeline within Snowflake.

Upon downloading the dataset, be sure to upload it onto your Snowflake Cloud Data 

Platform.  Once that’s done, we are ready to begin.  Let us first look at the data present. 

select * from "COE_PRACTISE_DB"."PUBLIC"."ARIMA_TEST"

Deriving Insights

We create a python UDF as follows:

create or replace function sarimax_main(DATE VARIANT, RATIO VARIANT)

returns variant

language python

runtime_version = '3.8'

packages = ('pandas==1.2.3','statsmodels==0.12.2')

handler = 'sarimax_func'

as

$$

import pandas as pd

import statsmodels.api as sm

from datetime import datetime

from dateutil.relativedelta import relativedelta

#define the handler function which accepts 2 parameters, date and ratio in the form of a list.

def sarimax_func(date,ratio):

#convert the two lists into a dictionary and then to a pandas dataframe.

    dict={'DATE':date,'RATIO':ratio}

    df=pd.DataFrame(dict)

#define a seasonal arima model

    model=sm.tsa.statespace.SARIMAX(df['RATIO'],order=(1, 1, 1),seasonal_order=(1,1,1,12))

    results=model.fit()

#the first prediction must occur right after the last value in the dataframe.

    start_pred=len(df)+1

#the last prediction is 12 months after the last date 

    last_date=df["DATE"].iloc[-1]

    dates=[]

    for i in range(1,13):
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We create a python UDF as follows:
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returns variant

language python

runtime_version = '3.8'

packages = ('pandas==1.2.3','statsmodels==0.12.2')

handler = 'sarimax_func'
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$$

import pandas as pd

import statsmodels.api as sm
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from dateutil.relativedelta import relativedelta
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Writing the UDF
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We create a python UDF as follows:

create or replace function sarimax_main(DATE VARIANT, RATIO VARIANT)

packages = ('pandas==1.2.3','statsmodels==0.12.2')

handler = 'sarimax_func'

import statsmodels.api as sm

from datetime import datetime

from dateutil.relativedelta import relativedelta

#define the handler function which accepts 2 parameters, date and ratio in the form of a list.

def sarimax_func(date,ratio):

#convert the two lists into a dictionary and then to a pandas dataframe.

    dict={'DATE':date,'RATIO':ratio}

    df=pd.DataFrame(dict)

#define a seasonal arima model

    model=sm.tsa.statespace.SARIMAX(df['RATIO'],order=(1, 1, 1),seasonal_order=(1,1,1,12))

#the first prediction must occur right after the last value in the dataframe.

#the last prediction is 12 months after the last date 

    last_date=df["DATE"].iloc[-1]

create or replace function sarimax_main(DATE VARIANT, RATIO VARIANT)

packages = ('pandas==1.2.3','statsmodels==0.12.2')

#define the handler function which accepts 2 parameters, date and ratio in the form of a list.

#convert the two lists into a dictionary and then to a pandas dataframe.

    model=sm.tsa.statespace.SARIMAX(df['RATIO'],order=(1, 1, 1),seasonal_order=(1,1,1,12))

#the first prediction must occur right after the last value in the dataframe.



        add_month = datetime.strptime(last_date,"%Y-%m-%dT08:00:00.000Z").date() + 

relativedelta(months=i)

        dates.append(add_month.strftime("%Y-%m-%d"))

    pred_array=results.predict(start=start_pred,end=start_pred+11,dynamic=True)

    predictions=pred_array.tolist()

    return [predictions,dates] 

$$;

Over here, we use the SARIMAX algorithm to perform time series analysis. This UDF takes in 2 

parameters, DATE and RATIO and returns a list containing forecasted values for the next 12 

months.

We can run the SELECT  sarimax_main(DATE VARIANT, RATIO VARIANT); to obtain the 

forecast. But wait a second. How do we go about passing the data from the table into the 

UDF? Is there a way to call SQL statements from within the UDF? Well, no, UDFs act like a 

scalar function in that you pass parameters and it returns a value or a list of values. 

Constructing the Wrapper

In order to pass the data from the table into the UDF, we need to create a Stored Procedure 

that wraps around the UDF.  Let us create a stored procedure using javascript:

CREATE OR REPLACE PROCEDURE timeseries_prediction()

RETURNS variant

LANGUAGE JAVASCRIPT

execute as caller

AS

$$

//create a table to hold the timeseries prediction

var query0="create or replace transient table SARIMAX_OUTPUT (DATE STRING,RATIO 

FLOAT);"

var result=snowflake.execute({sqlText:query0});

//select * from the input table

var query1=`select * from "RATIO_OF_EXPORTS_TO_IMPORTS";`

var result_array = snowflake.execute({sqlText:query1});

//collect the output in 2 lists.
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        add_month = datetime.strptime(last_date,"%Y-%m-%dT08:00:00.000Z").date() + 

    pred_array=results.predict(start=start_pred,end=start_pred+11,dynamic=True)

Over here, we use the SARIMAX algorithm to perform time series analysis. This UDF takes in 2 

parameters, DATE and RATIO and returns a list containing forecasted values for the next 12 

We can run the SELECT  sarimax_main(DATE VARIANT, RATIO VARIANT); to obtain the 

forecast. But wait a second. How do we go about passing the data from the table into the 

UDF? Is there a way to call SQL statements from within the UDF? Well, no, UDFs act like a 

scalar function in that you pass parameters and it returns a value or a list of values. 

In order to pass the data from the table into the UDF, we need to create a Stored Procedure 

that wraps around the UDF.  Let us create a stored procedure using javascript:

var query0="create or replace transient table SARIMAX_OUTPUT (DATE STRING,RATIO 

date=[]

ratio=[]

while(result_array.next())

{

var date_val = result_array.getColumnValue(1);

date.push(JSON.stringify(date_val));

var ratio_val = result_array.getColumnValue(2);

ratio.push(ratio_val);

}

//call the python udf and pass date array and ratio array

query2=`select sarimax_main (parse_json('[`+date+`]'),parse_json('[`+ratio+`]'));`

var result_array2=snowflake.execute({sqlText:query2});

function_output=[]

while(result_array2.next())

{

var returned_values = result_array2.getColumnValue(1);

function_output.push(returned_values);

}

var forecast=function_output[0][0]

var dates=function_output[0][1]

//Insert into the output table created earlier.

for (let i = 0; i < dates.length; i++) {

query3=`INSERT INTO SARIMAX_OUTPUT (DATE,RATIO) VALUES 

('`+dates[i]+`','`+forecast[i]+`')`

var result_array3=snowflake.execute({sqlText:query3});

}

return "SUCCESS";

$$;

date=[]

ratio=[]

while(result_array.next())

{

var date_val = result_array.getColumnValue(1);

date.push(JSON.stringify(date_val));

var ratio_val = result_array.getColumnValue(2);

ratio.push(ratio_val);

}

//call the python udf and pass date array and ratio array

query2=`select sarimax_main (parse_json('[`+date+`]'),parse_json('[`+ratio+`]'));`

var result_array2=snowflake.execute({sqlText:query2});

function_output=[]

while(result_array2.next())

{

var returned_values = result_array2.getColumnValue(1);

function_output.push(returned_values);

}

var forecast=function_output[0][0]

var dates=function_output[0][1]

//Insert into the output table created earlier.

for (let i = 0; i < dates.length; i++) {

query3=`INSERT INTO SARIMAX_OUTPUT (DATE,RATIO) VALUES 

('`+dates[i]+`','`+forecast[i]+`')`

var result_array3=snowflake.execute({sqlText:query3});

}

return "SUCCESS";

$$;

07

date=[]

ratio=[]

while(result_array.next())

{

var date_val = result_array.getColumnValue(1);

date.push(JSON.stringify(date_val));

var ratio_val = result_array.getColumnValue(2);

ratio.push(ratio_val);

}

//call the python udf and pass date array and ratio array

query2=`select sarimax_main (parse_json('[`+date+`]'),parse_json('[`+ratio+`]'));`

var result_array2=snowflake.execute({sqlText:query2});

function_output=[]

while(result_array2.next())

{

var returned_values = result_array2.getColumnValue(1);

function_output.push(returned_values);

}

var forecast=function_output[0][0]

var dates=function_output[0][1]

//Insert into the output table created earlier.

for (let i = 0; i < dates.length; i++) {

query3=`INSERT INTO SARIMAX_OUTPUT (DATE,RATIO) VALUES 

('`+dates[i]+`','`+forecast[i]+`')`

var result_array3=snowflake.execute({sqlText:query3});

}

return "SUCCESS";

$$;



var date_val = result_array.getColumnValue(1);

var ratio_val = result_array.getColumnValue(2);

//call the python udf and pass date array and ratio array

query2=`select sarimax_main (parse_json('[`+date+`]'),parse_json('[`+ratio+`]'));`

var result_array2=snowflake.execute({sqlText:query2});

var returned_values = result_array2.getColumnValue(1);

//Insert into the output table created earlier.

query3=`INSERT INTO SARIMAX_OUTPUT (DATE,RATIO) VALUES 

var result_array3=snowflake.execute({sqlText:query3});

query3=`INSERT INTO SARIMAX_OUTPUT (DATE,RATIO) VALUES 

In the above diagram, we make use of Snowsight to build a dashboard in order to visualize 

and draw insights from our data. We can see the predicted values from Feb 2022 to Jan 2023 

and derive our insights from it.

Completing with a Task

And now, we can create a task on top of this stored procedure to schedule it to run as per our 

requirement. 

create task timeseries_task

schedule = 'USING CRON 0 0 1 * * America/Los_Angeles'

as

  call timeseries_prediction();

A Simplified, Bright Future

As you can observe, we took a pipeline wherein data moved from an SF table => Spark 

cluster/VM=>SF table, all while being scheduled by Airflow/Linux Cron into a pipeline that 

only makes use of Snowflake as shown below: 
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Figure 6 : Insights
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You can see how Python UDF straddled with data in multiple locations to achieve what was 

required for the user seamlessly. Multiple platforms are soon to be a relic of the past. While 

relics are meant to be remembered, no good can come from using them today.

We have already begun to power our products with Snowflakes extensibility features. This 

Figure 7: Improved Architecture

Task

1. Task calls
stored proc

3. Sp calls udf 
and passes
data as
parameters

4. Udf returns
forecast in list

2.SP gets data from table

5. SP writes into output_table

Timeseries_SP()

Timeseries_SP()

truly is game changing for us, and I am sure, it would be for you as well. Python UDFs are an

important tool that shouldn't be overlooked.
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